Abstract

New rapid shutdown strategies have been recently tested in the DIII-D tokamak to mitigate runaway electrons (REs). Disruptions in ITER are predicted to generate multi-MeV REs that could damage the machine. The RE population in large tokamaks is expected to be dominated by avalanche amplification which can be mitigated at high density levels by collisional drag. Particle injection schemes for collisional suppression of RE have been developed and tested in ITER-relevant scenarios: massive gas injection, shattered pellet injection (SPI) and shell pellet injection. The results show an improved penetration of particles injected with the SPI. Another strategy has been developed to harmlessly deconfine REs by applying a non-axisymmetric magnetic perturbation to worsen their confinement. This technique appeared to deconfine seed RE before the avalanche process could amplify the RE beam. The last method tested was to use the plasma position control system on the RE beam to prevent it from contacting the wall. This proved effective in preventing high current RE beam from touching the wall and providing more time to mitigate an existing RE beam but a successful ‘soft landing’ (without fast final losses) of the RE has not been observed yet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call