Abstract

Thin-film, proton exchange membrane fuel cells are developed using photolithographic patterning, physical vapor deposition, and spin-cast deposition techniques. In this study, micrometer-thick layers of nickel (Ni) and platinum (Pt) electrodes, as well as the proton conducting electrolyte layer of perfluoronated sulfonic acid, are synthesized. The anode layer is conductive to pass the electric current and provides mechanical support to the electrolyte and cathode layer that enables combination of the reactive gases. The morphology desired for both the anode and cathode layers facilitates generation of maximum current density from the fuel cell. For these purposes, the parameters of the deposition process and post-deposition patterning are optimized for continuous porosity across both electrode layers. The power output generated through current–voltage measurement is characterized at various temperatures in the range of 60–90 °C using dilute (4%) hydrogen fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.