Abstract

The controllable design of red-emitting carbon dots and further exploration of their application in the trace determination of environmental pollutants remains a tremendous challenge. Herein, the novel strategy for red fluorescent carbon dots (R-CDs) with a higher quantum yield of 58.9% was proposed by doping small-molecule urea into the bio-dye of resazurin for the first time, which can retain the luminophore of precursors and exhibit exceptional optical, advantageous reversibility and outstanding photostability. Importantly, the R-CDs exhibit a remarkable fluorescence reduction towards tetracyclines (TCs) accompanied by a noticeable color change of R-CDs solution from red to yellow, which can realize the trace detection of TCs at strelatively low levels, including tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC). The linear range of TC, CTC, and OTC are 3–40 μM, 4–50 μM, and 2–50 μM, and the corresponding detection limits are 38.5 nM, 64.6 nM, and 45.4 nM, respectively (S/N = 3). Furthermore, the R-CDs demonstrate sensitivity to the physiological pH in the linear range of 4.0–5.0 and 5.0–6.2 with a pKa of 5.61. As a multifunctional fluorescent sensor, R-CDs can provide a new perspective for the preparation of long-wavelength CDs, and further realize the trace determination of environmental pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call