Abstract

Concentration-dependent photoluminescence carbon dots (CDs) have been successfully synthesized through the one-step hydrothermal treatment of o-phthalic acid and ethylenediamine. The CDs possessed higher fluorescence quantum yield, up to 39.22%, exhibiting distinguished optical property, water solubility, and stability. The CDs that emit strong blue-green fluorescence can visually identify and determine tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC). TC quenched the fluorescence of CDs at 500nm owing to the inner filter effect; OTC behaved similarly, but the emission wavelength of CDs was red-shifted to 515nm. Inversely, once CTC was introduced to CDs solution, the fluorescence increased and the emission peak was blue-shifted to 450nm. Bandgap transition and electrostatic interaction were proposed to be the mechanisms for the detection of OTC and CTC by CDs. Wide linear relationships were established for TC, OTC, and CTC with the limits of detection to be 50nM, 36nM, and 373nM, respectively. Furthermore, the nanoscale probe constructed by this system has been applied to detect tetracyclines (TCs) in complex samples with satisfying recoveries (93.2-114%) and was designed as a portable test strip sensor for visually on-site TCs of honey sample screening. Accordingly, the preparation process of the nano fluorescent probe is simple and environmentally friendly, and the probe has a specific recognition ability for tetracyclines. The synthesized CDs in this work provide a new orientation for fast, effective, and visual real-time detection of tetracycline in actual samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call