Abstract

The interfacial properties of carbon fibers (CFs) composites were improved by modifying the self-emulsifying amphiphilic epoxy sizing agent with nano-SiO2 particles. Herein, a series of inorganic–organic nano-SiO2 core-cationic epoxy shell hybrid sizing agents (referred to as nano-SiO2 core–shell hybrid sizing agents) with various nano-SiO2 contents were synthesized and used to enhance the mechanical properties of CF/EP. The study indicated that the nano-SiO2 core–shell hybrid sizing agents had the characteristics of the perfect core–shell structure, single dispersion, particle sizes controllable, good storage and high heat resistance. Nano-SiO2 core–shell hybrid sizing agents significantly increased the surface roughness and the surface energy of CFs compared to the unmodified sizing agent. Nano-SiO2 core–shell hybrid sizing agents (7.2% SiO2) increased ILSS, IFSS by 16.92%, 21% and nano-SiO2 core–shell hybrid sizing agents (5.8% SiO2) increased tensile force of monofilament CF by 23.78%, respectively, compared with the unmodified agent. These reinforcements may have been caused by the enhancement of the stress transference of nano-particles in the interface between CFs and EP through an interlocking mechanism. As a result, the nano-SiO2 core–shell sizing agent overcomes the lack of adhesion of traditional nano modification methods and shows remarkable adhesion properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.