Abstract
In-situ synthesis of C3N4 on the carbon fiber surface was reported for enhancing interfacial properties of carbon fiber reinforced epoxy resin composite. The formed C3N4 on the carbon fiber surface can greatly increase the roughness, polar functional groups and wettability of carbon fiber surface, thereby leading to significant enhancement of interfacial properties of composites. After modification, interlaminar shear strength (ILSS) and interfacial shear strength (IFSS) of carbon fibers composites are increased from 44.3 to 60.7 MPa and from 43.1 to 75.9 MPa, respectively. Moreover, the surface free energy of carbon fibers is increased by 65.6%. The improved interfacial properties endow carbon fiber composites with better mechanical properties, leading to an increased tensile strength of composites from 1063 to 1279 MPa and total absorbed energy of impact experiment from 1.22 to 1.75 J. Meanwhile, the dynamic mechanical properties and hydrothermal aging resistance are also enhanced significantly. The storage modulus increases from 64.3 to 74.1 GPa. The markedly enhancement of interfacial mechanical properties and mechanical properties could be attributed to the improved resin wettability, enhanced mechanical interlocking and increased chemical bonding induced by the existence of C3N4 on the carbon fiber surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.