Abstract

The localization of mobile robots in outdoor and indoor environments is a complex issue. Many sophisticated approaches, based on various types of sensory inputs and different computational concepts, are used to accomplish this task. However, many of the most efficient methods for mobile robot localization suffer from high computational costs and/or the need for high resolution sensory inputs. Scan cross-correlation is a traditional approach that can be, in special cases, used to match temporally aligned scans of robot environment. This work proposes a set of novel modifications to the cross-correlation method that extend its capability beyond these special cases to general scan matching and mitigate its computational costs so that it is usable in practical settings. The properties and validity of the proposed approach are in this study illustrated on a number of computational experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.