Abstract
In scenarios of indoor localization of mobile robots, Global Positioning System (GPS) signals are prone to loss due to interference from urban building environments and cannot meet the needs of robot localization. On the other hand, traditional indoor localization methods based on wireless signals such as Bluetooth and WiFi often require the deployment of multiple devices in advance, and these methods can only obtain distance information and are unable to obtain the attitude of the positioning target in space. This paper proposes a method for the indoor localization of mobile robots based on a depth camera. Firstly, we extracted ORB feature points from images captured by a depth camera and performed homogenization processing. Then, we performed feature matching between adjacent two frames of images, and the mismatched points are eliminated to improve the accuracy of feature matching. Finally, we used the Iterative Closest Point (ICP) algorithm to estimate the camera’s pose, thus achieving the localization of mobile robots in indoor environments. In addition, an experimental evaluation was conducted on the TUM dataset of the Technical University of Munich to validate the feasibility of the proposed depth-camera-based indoor localization system for mobile robots. The experimental results show that the average localization accuracy of our algorithm on three datasets is 0.027 m, which can meet the needs of indoor localization for mobile robots.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.