Abstract

Flexible and transparent power sources are highly desirable in realizing next-generation all-in-one bendable, implantable, and wearable electronic systems. The developed power sources are either flexible but opaque or semitransparent but lack of flexibility. Therefore, there is increasing recognition of the need for a new concept of electrochemical device structure design that allows both high flexibility and transparency. In this paper, we present a new concept for electrochemical device design--a two-dimensional planar comb-teeth architecture on PET substrate--to achieve both high mechanical flexibility and light transparency. Two types of prototypes--dye-sensitized solar cells and supercapacitors--have been fabricated as planar devices and demonstrated excellent device performance, such as good light transparency, excellent flexibility, outstanding multiple large bending tolerance, light weight, effective prevention of short circuits during bending, and high device integration with up-date microelectronics, compared to conventional sandwich structure devices. Our planar design provides an attractive strategy toward the development of flexible, semitransparent electrochemical devices for fully all-in-one elegant and wearable energy management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call