Abstract

This study demonstrates a new approach for constructing a rotary piezoelectric motor that utilizes an asymmetric stator driven by a single-phase signal. An asymmetric stator with four driving feet is proposed on the basis of the idea of generating asymmetric action on the rotor. This new motor consists of one piezoelectric transducer with two anchors and four driving feet placed in a parallelogram and internally connected to a circular rotor. The four feet vibrate asymmetrically to push the rotor into motion in one direction when a preload is applied. The proposed motor is designed, analyzed, and tested by using a finite element method (FEM). The vibration and impedance characteristics of the stator are measured after fabricating a prototype, and the test results are consistent with the FEM analysis results. The typical output of the prototype is a no-load speed of 176.5 rpm and a maximum torque of 29.4 N mm at an excitation voltage of 274 Vp-p.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call