Abstract

Airway remodelling (AR) is an important pathological feature of chronic asthma and chronic obstructive pulmonary disease. The etiology of AR is complex and involves both lung structural and immune cells. One of the main contributors to airway remodelling is the airway smooth muscle (ASM), which is thickened by asthma, becomes more contractile and produces more extracellular matrix. As a second messenger, adenosine 3′,5′-cyclic monophosphate (cAMP) has been shown to contribute to ASM cell (ASMC) relaxation as well as to anti-remodelling effects in ASMC. Phosphodiesterase (PDE) inhibitors have drawn attention as an interesting new group of potential anti-inflammatory and anti-remodelling drugs. Recently, new hydrazide and amide purine-2,6-dione derivatives with anti-inflammatory properties have been synthesized by our team (compounds 1 and 2). We expanded our study of their PDE selectivity profile, ability to increase intracellular cAMP levels, metabolic stability and, above all, their capacity to modulate cell responses associated with ASMC remodelling. The results show that both compounds have subtype specificity for several PDE isoforms (including inhibition of PDE1, PDE3, PDE4 and PDE7). Interestingly, such combined PDE subtype inhibition exerts improved anti-remodelling efficacies against several ASMC-induced responses such as proliferation, contractility, extracellular matrix (ECM) protein expression and migration when compared to other non-selective and selective PDE inhibitors. Our findings open novel perspectives in the search for new chemical entities with dual anti-inflammatory and anti-remodelling profiles in the group of purine-2,6-dione derivatives as broad-spectrum PDE inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.