Abstract

The thermal fluidic system (TFS), a type of two-phase device, has recently attracted significant attention in mechatronic system cooling. The aim of this study is to use magnetic nanofluid (MNF) with magneto-hydrodynamics (MHD) to enhance the thermal performance of a miniature TFS. The MNF used for the primary working fluid (WF) can be prepared from fine ferromagnetic particles of iron ferrite using a chemical co-precipitation technique. Based on the design of local electromagnetic fields, a transient Lorentz force can be induced within the MNF-based channel flow and thermal convection in MNF can then be actively enhanced. In this study of a novel TFS, the highest thermal performance showed a 41.82+/-0.01% enhancement. This study not only shows an effective technique for identifying TFS dynamics, but also provides valuable suggestions for cooling system designs using regular heat transportation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.