Abstract

Electrochemical nitrate reduction (NO3−RR) is considered a promising approach to remove environmentally harmful nitrate from wastewater while simultaneously producing ammonia, a product with high value. An important consideration is the choice of catalyst, which is required not only to accelerate NO3−RR but also to direct the product selectivity of the electrolysis toward ammonia production. To this end, we demonstrate the fabrication of novel Ni foam catalysts produced through a dynamic hydrogen bubble template assisted electrodeposition process. The resulting foam morphology of the catalyst is demonstrated to crucially govern its overall electrocatalytic performance. More than 95% Faradaic efficiency of ammonia production was achieved in the low potential range from –0.1 to −0.3 V vs. RHE. Hydrogen was found to be the only by-product of the nitrate reduction. Intriguingly, no other nitrogen containing products (e.g., NO,N2O, or N2) formed during electrolysis, thus indicating a 100% selective (nitrate→ammonia) conversion. Therefore, this novel Ni foam catalyst is a highly promising candidate for truly selective (nitrate→ammonia) electroreduction and a promising alternative to mature copper-based NO3−RR benchmark catalysts. Excellent catalytic performance of the novel Ni foam catalyst was also observed in screening experiments under conditions mimicking those in wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.