Abstract

When analyzing the stability of time-varying delay systems in view of the Lyapunov–Krasovskii functional, a quadratic polynomial function with regard to time-varying delay is always generated. And it is particularly crucial to determine the negativeness of the matrix of such a quadratic form function for obtaining an analysis result expressed in linear matrix inequalities. This paper proposes a method of tangent intersection in the delay interval segmentation, producing the generalized quadratic convex conditions by further utilizing the cross point between every two tangent lines. It reduces the conservatism of the existing conditions remarkably without requiring unexplainable adjustable parameters and additional decision variables. Benefiting from the newly proposed quadratic convex conditions, the novel stability conditions are derived, the superiority of which is demonstrated through several widely used numerical instances and single area power system PI control example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.