Abstract

In this study, a new series of N-acyl hydrazones 7a-e, 8a-e, and 9a-e, starting from methyl δ-oxo pentanoate with different substituted groups 1a-e, were synthesized as anticancer agents. The structures of obtained target molecules were identified by spectrometric analysis methods (FT-IR, 11H NMR, 13C NMR, and LC-MS). The antiproliferative activity of the novel N-acyl hydrazones was evaluated on the breast (MCF-7) and prostate (PC-3) cancer cell lines by an MTT assay. Additionally, breast epithelial cells (ME-16C) were used as reference normal cells. All newly synthesized compounds 7a-e, 8a-e, and 9a-e exhibited selective antiproliferative activity with high toxicity to both cancer cells simultaneously without any toxicity to normal cells. Among these novel N-acyl hydrazones, 7a-e showed the most potent anticancer activities with IC50 values at 7.52 ± 0.32-25.41 ± 0.82 and 10.19 ± 0.52-57.33 ± 0.92 μM against MCF-7 and PC-3 cells, respectively. Also, molecular docking studies were applied to comprehend potential molecular interactions between compounds and target proteins. It was seen that the docking calculations and the experimental data are in good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call