Abstract

The aim of this manuscript was the development of easy-to-operate quantum dots (QDs)-based immunochemical techniques for simultaneous screening of several mycotoxins in cereals. Two different approaches for multiplex fluorescent immunosorbent assay (FLISA) were employed. In the first approach a multiwell plate in which the different wells express a different mycotoxin (deoxynivalenol, zearalenone, aflatoxin B1, T2-toxin and fumonisin B1) was considered as a multiplex because each sample was pretreated once and then will be distributed over a series of wells within the same plate (single-analyte multiplex, SAM). The entire assay allows the simultaneous determination of all compounds. For the double-analyte multiplex (DAM) two different specific antibodies were co-immobilized in one single well. Zearalenone and aflatoxin B1 were simultaneously determined, provided their conjugates are labeled with QDs which are fluorescent in different parts of the spectrum, by scanning the assay outcome at two different wavelengths. The limits of detection (LOD) for the simultaneous determination of deoxynivalenol, zearalenone, aflatoxin B1, T2-toxin and fumonisin B1 by SAM FLISA were 3.2, 0.6, 0.2, 10 and 0.4µgkg−1, respectively, while for the DAM FLISA they were 1.8 and 1µgkg−1 for zearalenone and aflatoxin B1, respectively. SAM FLISA principle was also presented in a qualitative on-site format and tested for on-site multiplex determination of four mycotoxins in cereals. The achieved cut-off values of 500, 100, 2 and 100µgkg−1 for deoxynivalenol, zearalenone, aflatoxin B1 and T2-toxin respectively. For simplification of multiassay results' evaluation the conjugates with QDs of different colors were used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call