Abstract

The paper demonstrates a novel multiple-valued logic (MVL) design using a three-peak negative differential resistance (NDR) circuit, which is made of several Si-based metal-oxide-semiconductor field-effect-transistor (MOS) and SiGe-based heterojunction bipolar transistor (HBT) devices. Specifically, this three-peak NDR circuit is biased by two switch-controlled current sources. Compared to the traditional MVL circuit made of resonant tunneling diode (RTD), this multiple-peak MOS-HBT-NDR circuit has two major advantages. One is that the fabrication of this circuit can be fully implemented by the standard BiCMOS process without the need for molecular-beam epitaxy system. Another is that we can obtain more logic states than the RTD-based MVL design. In measuring, we can obtain eight logic states at the output according to a sequent control of two current sources on and off in order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.