Abstract

Long Term Evolution-Advanced (LTE-A) uses Single-Carrier Frequency Division Multiple Accesses (SC-FDMA) for uplink, because it has robust performance against the Peak Average Power Ratio (PAPR), compared to Orthogonal Frequency Division Multiple Access (OFDMA). SC-FDMA schemes include Interleaved FDMA (IFDMA) and Localized FDMA (LFDMA), both of which are commonly practiced in LTE-A uplink. IFDMA allocates distributed frequency carriers for users, whereas LFDMA allocates localized frequency carriers for users. The frequency allocation in an IFDMA scheme exhibits better PAPR performance, whereas the advantage of LFDMA is its lower complexity requirements. In this paper, a new scheme is introduced that integrates IFDMA and LFDMA by using a variable interleave allocation of subcarriers in the bandwidth. Here, Generalized Interleaved Frequency Division Multiple Accesses (GIFDMA), is used as a master key that controls the allocation for interleaved and localized FDMA, also known as L/I FDMA. This integration of IFDMA and LFDMA has been derived theoretically and empirically. Simulations are conducted to investigate the effect of different parameters on the GIFDMA PAPR performance, which is compared to that of conventional IFDMA and LFDMA. The simulation results revealed that the proposed GIFDMA provides PAPR performance comparable to that of both LFDMA and IFDMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.