Abstract

Perfluorooctane sulfonate (PFOS) is a highly persistent contaminant of emerging concern causing harmful effects to human and ecosystem health. In this study, a novel MOF-808 metal–organic framework (MOF) was prepared and evaluated for adsorptive removal of PFOS from aqueous solution. The MOF-808 had high specific surface area (SSA; 1610 m2/g) and was structurally stable in aqueous medium for 7 days under different pH conditions. The MOF-808 reached PFOS adsorption equilibrium within 30 min (at 500 mg/L initial PFOS) and attained the maximum adsorption capacity of 939 mg/g at pH 4.1 – 5.4 (with 50 – 500 mg/L initial PFOS). The PFOS adsorption capacity of MOF-808 was unaffected at pH 2 to 7, but gradually decreased at pH > 7. High SSA, favorable pore size and abundant active adsorption sites on MOF-808 triggered high PFOS adsorption onto the adsorbent. The PFOS adsorption process was endothermic and spontaneous in nature. Electrostatic interaction between the cationic central cluster ([Zr6O4(OH)4]12+) of MOF-808 and PFOS anion was identified as the key mechanism of PFOS adsorption onto MOF-808, as evident from the infrared spectroscopic investigation of the adsorbent. This study suggests that MOF-808 can be considered as a highly efficient adsorbent for PFOS removal from water and warrants future research to evaluate the application and performance of the material under wastewater conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.