Abstract
Photochemically coupled micro-oscillators are studied experimentally and computationally in star networks to investigate the modes and mechanisms of synchronization. The micro-oscillators are catalyst-loaded beads that are placed in catalyst-free Belousov-Zhabotinsky (BZ) solutions. The properties of the photochemical coupling between the oscillators are determined by the composition of the BZ reaction mixtures, and both excitatory coupling and inhibitory coupling are studied. Synchronization of peripheral oscillators coupled through a hub oscillator is exhibited at coupling strengths leading to novel modes of synchronization of the hub with the peripheral oscillators. A theoretical analysis provides insights into the mechanism of the synchronization. The heterogeneous peripheral oscillators have different phase velocities that give rise to a phase divergence; however, the perturbation from the hub acts to realign the phases by delaying the faster oscillators more than the slower oscillators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.