Abstract

We study numerically the behavior of one-dimensional arrays of aqueous droplets containing the oscillatory Belousov-Zhabotinsky reaction. Droplets are separated by an oil phase that allows coupling between neighboring droplets via two species: an inhibitor, Br(2), and an activator, HBrO(2). Excitatory coupling alone (through the activator) generates in-phase oscillations and/or "waves," while inhibitory coupling alone (through Br(2)) gives rise to antiphase oscillations, Turing patterns, and their combinations. The simultaneous presence of excitatory and inhibitory coupling leads to a large number of new spatiotemporal patterns, including some that exhibit very complex behavior. Analysis of a simple model allows us to simulate patterns resembling those observed experimentally under similar conditions and to elucidate the contributions of droplet and gap sizes, activator and inhibitor partition coefficients, and malonic acid concentration to the coupling strengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.