Abstract
Factors limiting and degrading the performance of a multiport-based receiver system for wideband signals are modeled and a suitable calibration approach is proposed in this paper. The proposed calibration approach uses a new model for linearization of diode power detectors suitable for wideband real (modulated) wireless signals. To verify the proposed model and calibration procedure, a 2-18-GHz wideband six-port-based receiver system is set up and its performance is verified using wireless signals having different bandwidth and modulation schemes. The new calibration algorithm improved the error vector magnitude (EVM) of the receiver system from 7.9% to 1.6% for a 64-QAM signal with a bandwidth of 2 MHz and a data rate of 12 Mb/s. To show the usefulness of the model for real communication signals, wideband code division multiple access (WCDMA) and wireless local area network (WLAN) signals are received and EVM of 4.7% and 3.4% are reported for the WCDMA and the WLAN signals, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.