Abstract
A model is established to investigate the release and condensation of inorganics for a wood steam/oxygen-blown fluidized-bed gasification process. In the established model, fates of major elements (C, H, O, N, S, and Cl) and minor elements (Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti, and Zn) are modeled separately. The composition of gaseous species involving major elements is predicted using Aspen Plus based on a semiempirical model. The release of minor elements and the condensation of inorganics are predicted using software SimuSage. The combination of Aspen Plus with SimuSage is achieved by manually inputting the stream parameters calculated from Aspen Plus into SimuSage. On the basis of this developed model, effects of gasification temperature on the condensation of Na-, K-, and Cl-containing species during gas cooling are studied. Results show that the process model established by combining Aspen Plus and SimuSage is valid and can be used to investigate the release of inorganics during gasification and condensation of inorganics during gas cooling. Under the investigated gasification conditions, regardless of the bed material, there are two temperature ranges within which no salt melt is formed during gas cooling. As the gasification temperature increases, the high-temperature range without salt melt formation becomes successively wider.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have