Abstract

SARS-CoV-2 is a positive-strand RNA virus in the Coronaviridae family that is responsible for morbidity and mortality worldwide. To better understand the molecular pathways leading to SARS-CoV-2 virus assembly, we examined a virus-like particle (VLP) system co-expressing all structural proteins together with an mRNA reporter encoding nanoLuciferase (herein nLuc). Surprisingly, the 19 kDa nLuc protein itself was encapsidated into VLPs, providing a better reporter than nLuc mRNA itself. Strikingly, infecting nLuc-expressing cells with the SARS-CoV-2, NL63 or OC43 coronaviruses yielded virions containing packaged nLuc that served to report viral production. In contrast, infection with the flaviviruses, dengue or Zika, did not lead to nLuc packaging and secretion. A panel of reporter protein variants revealed that the packaging is size-limited and requires cytoplasmic expression, indicating that the large virion of coronaviruses can encaspidate a small cytoplasmic reporter protein. Our findings open the way for powerful new approaches to measure coronavirus particle production, egress and viral entry mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.