Abstract

Abstract. Uranium–uranium (234U–238U) disequilibrium dating can determine the age of secondary carbonates over greater time intervals than the well-established 230Th–234U dating method. Yet it is rarely applied due to unknowns in the initial δ234U (δ234Ui) value, which result in significant age uncertainties. In order to understand the δ234Ui in Devils Hole 2 cave, Nevada, we have determined 110 δ234Ui values from phreatic calcite using 230Th–234U disequilibrium dating. The sampled calcite was deposited in Devils Hole 2 between 4 and 590 ka, providing a long-term look at δ234Ui variability over time. We then performed multi-linear regression among the δ234Ui values and correlative δ18O and δ13C values. The regression can be used to estimate the δ234Ui value of Devils Hole calcite based upon its measured δ18O and δ13C values. Using this approach and the measured present-day δ234U values of Devils Hole 2 calcite, we calculated 110 independent 234U–238U ages. In addition, we used newly measured δ18O, δ13C, and present-day δ234U values to calculate 10 234U–238U ages that range between 676 and 731 ka, thus allowing us to extend the Devils Hole chronology beyond the 230Th–234U-dated chronology while maintaining an age precision of ∼ 2 %. Our results indicate that calcite deposition at Devils Hole 2 cave began no later than 736 ± 11 kyr ago. The novel method presented here may be applied to future speleothem studies in similar hydrogeological settings, given appropriate calibration studies.

Highlights

  • The mid-20th century discovery of 234U–238U disequilibrium in natural waters (Cherdyntsev, 1955; Isabaev et al., 1960; Thurber, 1962) unlocked a new geochronometer for sediments in marine and freshwater settings

  • We have developed a novel method to determine the δ234Ui values in Devils Hole (DH)/Devils Hole 2 (DH2) calcite

  • We established a robust multiple linear regression model between δ234Ui, δ18O, and δ13C values of DH2 calcite deposited between 4 and 309 ka. We applied this model to estimate the δ234Ui of DH2 calcite using the respective δ18O and δ13C values

Read more

Summary

Introduction

The mid-20th century discovery of 234U–238U disequilibrium in natural waters (Cherdyntsev, 1955; Isabaev et al., 1960; Thurber, 1962) unlocked a new geochronometer for sediments in marine and freshwater settings. Ku (1965) was the first to test the 234U–238U geochronometer in marine sediments This method has been applied successfully in marine-sourced secondary carbonates (Veeh, 1966; Bender et al, 1979; Ludwig et al, 1991), it has largely been limited by the potential mobility of U following deposition, as observed in mollusks (Kaufman et al, 1971) and corals (Bender et al, 1979; Gallup et al, 1994). Uncertainties in determining past δ234Ui result in 234U–238U age uncertainties that are orders of magnitude greater than those common for 230Th–234U disequilibrium dating. 230Th–234U dating has remained the preferred method for determin-

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call