Abstract

Buffer materials such as bentonite are vital for absorbing radionuclide leakage and retarding migration from radioactive waste canisters. The diffusion coefficient and the retardation factor are the predominant properties controlling the diffusion-reaction process in a buffer material. Diffusion experiments combined with Crank's graphical method are a well-established process for determining asymptotic diffusion coefficients. However, the inaccuracy of the diffusion coefficient that results from the subjective judgement of the late-time linear part of the cumulative concentration data in Crank's graphical method will deteriorate the estimate of the retardation factor. A novel parameter identification process based on an iterative and analytical method (PIPIAM) is proposed here to obtain the diffusion coefficients and porosity of bentonite using concentration data. The results of PIPIAM and the graphical method are compared through an error analysis of concentration. The results show that PIPIAM outperforms the graphical method in terms of the error reduction of the concentration and the uncertainty decrease of the estimated parameters. The proposed method is thus a good alternative for acquiring transport parameters for use in safety assessments of nuclear waste repositories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.