Abstract

Sternal dehiscence is frequently associated with wire-based closures cutting through fragile bone, allowing sternal motion, separation, and infection. We investigated whether bone cutting could be limited by using a newly available mesh suture with improved force distribution. Five sternal models were closed using 8 interrupted single sternal wires, double sternal wires, braided poly(ethylene terephthalate) sutures, single-wrapped mesh sutures, or double-wrapped mesh sutures. To simulate chest-wall forces, closed sternal models were pulled apart using 1020N of axial force applied incrementally. Double sternal wire and double-wrapped mesh suture were further compared by closing 3 new models with each material and subjecting these models to cyclic loading cycles, simulating breathing and coughing. Image analysis of needle hole size measured "bone cutting" by each closure material and sternal distraction as a function of force. All models exhibited maximal separation at the xiphoid. During axial loading, needle hole size increased 7.2% in the double-wrapped mesh suture model and 9.2% in the double-wire model. Single-wrapped mesh suture, single wires, and braided poly(ethylene terephthalate) extended needle hole size by 6.7%, 47.0%, and 168.3% of original size, respectively. The double-wire model resisted sternal distraction best, separating 0.285cm at the xiphoid. During cyclic loading, mesh suture exhibited significantly less bone cutting (P=.02) than double wire, with comparable levels of sternal separation (P=.07). Mesh suture may resist bone cutting seen in sternal wire closure in bone models with comparable distraction to currently used sternal closure methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call