Abstract

Surrogate light chain, which escorts the mu heavy chain to the cell surface, is a critical component of the pre-B cell receptor complex. The two proteins that comprise the surrogate light chain, VpreB and lambda5/14.1, contain both unique regions and Ig-like domains. The unique regions have been postulated to function in the assembly of the surrogate light chain. However, by using transient transfection of COS7 cells, we show that deletion of the unique regions of both proteins did not inhibit the assembly of surrogate light chain. Instead, in vivo folding studies showed that the unique region of lambda5/14.1 acts as an intramolecular chaperone by preventing the folding of this protein when it is expressed in the absence of its partner, VpreB. The Ig domains of both lambda5/14.1 and VpreB are atypical. The one in VpreB lacks one of the canonical beta strands whereas the one in lambda5/14.1 has an extra beta strand. Deletion of the extra beta strand in lambda5/14.1 completely abrogated the formation of the surrogate light chain, demonstrating that complementation of the incomplete Ig domain in VpreB by the extra beta strand in lambda5/14.1 was necessary and sufficient for the folding and assembly of these proteins. Our studies reveal two novel mechanisms for regulating surrogate light chain formation: (i) the presence of an intramolecular chaperone that prevents folding of the unassembled subunit but that remains part of the mature assembled protein, and (ii) splitting an Ig domain between two proteins to control their folding and assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call