Abstract

The fabrication process by electrodeposition routes and the study of general magnetic properties is reported for two types of nanostructured magnetic materials: (a) nickel-filled highly-ordered nanoporous alumina templates, and (b) electrodeposited Ni layers onto glass coated amorphous microwires. Arrays of Ni nanowires, about 30 nm in diameter and separated by about 100 nm, are obtained by electrodeposition into the pores of alumina membranes prepared by two-steps anodization process from highly pure aluminum substrates. Morphological studies have been performed by high resolution scanning electron microscopy (HRSEM). The study includes the optimization of preparation parameters and the magnetic characterization of the hexagonally arranged nanowire arrays, i.e. the influence of the pore diameter and the interwire distance on the coercivity of the whole nanowire array. On the other hand, multi-layered magnetic microwires have been prepared in the following sequence: a nanometric Au coat is first sputtered onto Pyrex coated FeSiB amorphous microwires followed by electrodeposition of a 500 nm thick Ni external cover. While in as-cast microwires the hysteresis loop is squared shaped (magnetic bistability), in the case of the multilayer microwire, a transverse magnetic anisotropy is induced when reducing the measuring temperature as a consequence of the stresses induced by the different thermal expansion coefficients of the various layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.