Abstract

High-quality densely packed hexagonal arrays of Ni nanowires have been prepared by filling self-ordered nanopores in alumina membranes. Nanowires with different diameter d (18–83 nm) and lattice parameter D (65 and 105 nm) have been studied by atomic force, high resolution scanning electron microscopies, Rutherford backscattering, and vibrating sample magnetometer techniques. Axial loops coercivity and remanence decrease with increasing ratio diameter to lattice parameter, r, until nanowires start to interconnect locally. Additionally, hysteresis of in-plane loops increases with packing factor. In order to interpret the experimental results, multipolar magnetostatic interactions among nanowires with increasing ratio r are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.