Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone derived from preproglucagon. It is secreted by enteroendocrine cells in response to feeding and, in turn, acts as a critical regulator of insulin release. Modulating GLP-1 secretion holds promise as a strategy for controlling blood glucose levels. To dissect GLP-1 regulation and discover specific secretagogues, we engineered a reporter cell line introducing a luciferase within the proglucagon sequence in GLUTag cells. The assay was validated using western blotting and ELISA. A focused natural compounds library was screened. We measured luminescence, glucose uptake and ATP to investigate the mechanism by which newly found secretagogues potentiate GLP-1 secretion. The newly created reporter cell line is ideal for the rapid, sensitive and quantitative assessment of GLP-1 secretion. The small molecule screen identified non-toxic GLP-1 modulators. Quercetin is the most potent newly found GLP-1 secretagogue, while other flavonoids also potentiate GLP-1 secretion. Quercetin requires glucose and extracellular calcium to act as GLP-1 secretagogue. Our results support a mechanism whereby flavonoids cause GLUTag cells to utilize glucose more efficiently, leading to elevated ATP levels, followed by KATP channel blockade and GLP-1 exocytosis. Our methodology enabled finding of new GLP-1 secretagogues. Quercetin is a potent, naturally occurring GLP-1 secretagogue. Mechanistic studies of newly found secretagogues are possible in newly created reporter cell line. Further validation in more physiological systems, such as primary L-cells or whole organisms, is needed. GLP-1 secretagogues might serve as leads for developing alternative glucose-lowering therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.