Abstract

In recent years, ultraviolet–visible spectroscopy has been widely used for chemical oxygen demand (COD) measurements of water. However, chemical compositions of substance in different water samples can cause measurement deviations, so a local calibration is needed. In this study, a novel local calibration method is proposed. The absorption spectra of COD standard solutions and wastewater samples taken from four factories were collected. We analyzed the impact of chemical compositions of substance in different water samples and extracted the morphology features of their absorptive spectra for recognition models. Furthermore, we calculated the local calibration parameters of the four categories of real water samples by specific modification based on the ability of light absorption in various water environments. After the process of local calibration, the root mean square errors (RMSEs) of the predictions were very small, which highlights the potential of this method for improving the accuracy and adaptability of COD measurements based on ultraviolet–visible spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call