Abstract

The Lactobacillus consortium LBC-4 was evaluated for its ability to mitigate zearalenone (ZEN) contamination, addressing a critical food and health security issue. This study highlights the potential of LBC-4 in mycotoxin detoxification through comprehensive morphological and genotypic analyses. The LBC-4 consortium, confirmed by PCR to encompass various Lactobacillus strains, efficiently adsorbed 88.7% and 89% of ZEN within 1 and 24 h at 37 °C, respectively, demonstrating a dynamic relationship between bacterial growth and mycotoxin sequestration. Optimal ZEN removal was achieved at 37 °C and pH 7.0 to 8.0. The mechanisms of ZEN removal were elucidated, revealing the roles of cell wall, viable cells, and culture supernatants. Heat-treated LBC-4 showed enhanced ZEN adsorption, supported by Scanning Electron Microscopy and Fourier Transform Infrared Analysis, which indicated significant structural changes. Additionally, LBC-4 degraded ZEN into less toxic derivatives, including 6, 8, 10-trihydroxy zearalenol-14-sulfate, 6, 8, 10-trihydroxy zearalenol, 6, 8-dihydroxy zearalenol, and 6, 8, 10-trihydroxy zearalenol, underscoring the consortium's multifaceted mechanisms and its potential for effective microbial ZEN removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.