Abstract
Solving differential equations is an ancient and very important research topic in theory and practice. The exact analytical solution to differential equations can describe various physical phenomena such as vibration and propagation wave. In this paper, the bilinear neural network method (BNNM), which uses neural network to unify all kinds of classical test function methods, is employed to obtain some new exact analytical solutions of the ([Formula: see text])-dimensional Hirota bilinear (HB) equation. Based on the Hirota form of the HB equation, we constructed four kinds of new solutions which contain the breather solution, rogue wave solution, breather lump-type soliton solution and the interaction solution between the periodic waves and two-kink wave by introducing a series of test functions in both single-layer and multi-layer neurons such as [4–2–2] and [4–2–3] neural network models. In addition, we compared them to those that had already been published. It is clear that our results are not consistent with those found in these publications. Their corresponding dynamic features are vividly demonstrated in some 3D, contour, x-curves and y-curves plots. The results obtained demonstrate the potential of the proposed methods to solve other nonlinear partial differential equations in fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.