Abstract
The existence of slow adsorption-desorption kinetics in chiral liquid chromatography is common knowledge. This may significantly contribute to worsening the efficiency and kinetic performance of a chromatographic run, especially when high flow rates are employed. Many attempts and protocols have been proposed to access this term, the so-called cads\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c_{ads}$$\\end{document}, but they are based on different (theoretical) assumptions. As a consequence, no official method is available for the estimation of the adsorption-desorption kinetics term. In this work, a novel approach to access cads\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$c_{ads}$$\\end{document} is presented. This procedure combines experimental results obtained with kinetic and thermodynamic measurements. The investigations have been performed on two zwitterionic teicoplanin chiral stationary phases (CSPs) based on 1.9 μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu $$\\end{document}m fully porous and 2.0 μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu $$\\end{document}m superficially porous particles (FPPs and SPPs), using Z-D,L-Methionine as probe molecule. Kinetic studies have been performed through the combination of both stop-flow and dynamic measurements, while adsorption isotherms have been calculated through Inverse Method. This study has confirmed that, on both particle formats, analyte diffusion on the surface of the particle is negligible, meaning that adsorption is localized, and it has been demonstrated that adsorption-desorption kinetics is strongly dependent on particle geometry and, in particular, on the loading of chiral selector. These findings are fundamental not only to unravel novel aspects of the complex enantiorecognition mechanism but also to optimize the employment of CSPs for ultra-fast and preparative applications.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.