Abstract

We introduce two novel III-V inverted T-channel vertical line tunnel field-effect transistor (TFET) configurations, leveraging staggered bandgap compound materials. Design D-1 operate s without negative capacitance, while Design D-2 incorporates negative capacitance. Both designs employ area-enhanced gate normal line tunneling with dual-gate impact, utilizing InGaAs and GaAsSb materials to effectively reduce the overall bandgap. The double-area line tunneling, facilitated by the double gate, significantly enhances performance. D-1 exhibits notable improvements, with an ION value reaching 596.55 μA/μm, an ION/IOFF ratio of 2.5 × 108, a minimum subthreshold swing (SS) of 9.75 mV/dec, and an average subthreshold swing (AVSS) of 31.93 mV/dec. Building upon these achievements, D-2 takes a step further by implementing NC through a ferroelectric layer gate stack, significantly increasing the line tunneling rate symmetrically on the left and right channels beneath both gates. This marks the first proposal of double gate area-enhanced line tunneling with negative capacitance in this paper. D-2 demonstrates remarkable performance for future low-power applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.