Abstract

A novel series of pyrazolyl chalcones containing quinoline scaffold, 5 a-v has been synthesized by Claisen Schimdt condensation of aromatic acetophenone with 1-(4-methylquinolin-2-yl)-3-aryl-1H-pyrazole-4-carbaldehyde in quantitative yield. The compounds were characterized using IR, NMR, MS and elemental analysis. An E-configuration about CC ethylenic bond was determined using 1H NMR spectroscopy. These compounds exhibited significant antimalarial potential against CQ-sensitive and CQ-resistant strain of Plasmodium falciparum. Structure activity relationship has also been established based on outcomes of in vitro schizont inhibition assay. Compound 5u, (Z)-3-(1-(4-methylquinolin-2-yl)-3-p-tolyl-1H-pyrazol-4-yl)-1-p-tolylprop-2-en-1-one, was found to be the most potent among the series of synthetic analogues. In vivo, it demonstrated significant parasitemia suppression of 78.01% at a dose of 200 mg/kg against P. berghei in infected mice without any mortality in 7 days. In silico molecular docking study revealed that this compound 5u bound to the active site of cysteine protease falcipain-2 enzyme. Furthermore, in silico ADME studies, were also performed and physicochemical qualifications of the title compounds were determined. The biological outcomes of newer heterocyclic compounds may pave the new paths for researchers in development of potential antimalarial agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call