Abstract

The intramolecular hydrogen bond formed between a protonated amine and a neighboring H-bond acceptor group in the side chain of amodiaquine and isoquine is thought to play an important role in their antimalarial activities. Here we describe isoquine-based compounds in which the intramolecular H-bond is mimicked by a methylene linker. The antimalarial activities of the resulting benzoxazines, their isosteric tetrahydroquinazoline derivatives, and febrifugine-based 1,3-quinazolin-4-ones were examined in vitro (against Plasmodium falciparum ) and in vivo (against Plasmodium berghei ). Compounds 6b,c caused modest inhibition of chloroquine transport via the parasite's "chloroquine resistance transporter" (PfCRT) in a Xenopus laevis oocyte expression system. In silico predictions and experimental evaluation of selected drug-like properties were also performed on compounds 6b,c. Compound 6c emerged from this work as the most promising analogue of the series; it possessed low toxicity and good antimalarial activity when administered orally to P. berghei -infected mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.