Abstract

Tritium self-sufficiency is one of the fundamental challenges for commercially viable deuterium–tritium nuclear fusion power stations. The combination of key high temperature radiation shielding materials that possess dense, high neutron absorption cross-section, and moderation properties, and tritium breeding materials could involve interesting design spaces for the central column challenge in spherical tokamaks. Potential tungsten alloys can be used for two functions: radiation shielding and structural material, providing a new design space window for spherical tokamak central column breeding space. In this paper, we present two novel high temperature concepts for the inboard side of the breeder blanket in a confined space, such as a spherical tokamak. A tungsten–rhenium–hafnium-carbide lithium-based design was found to offer the best TBR given a parameter optimisation based on shielding and thermal requirements. A silicon-carbide lead-lithium breeder design was also investigated. The highest TBR was found to be 0.135 in a 3D neutronics calculation with a W-24.5Re-2HfC (structural and shielding, wt%), Li (90% Li-6 enriched breeder), and tungsten pentaboride (W2B5) (shielding) option. Although this TBR is lower than unity, it will contribute to the reactor’s global TBR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.