Abstract

Heterostructures formed by close conjunctions of plasmonic metal nanoparticles and non-plasmonic (2D) lamellar nanostructures are receiving extensive interest as solar-light-driven photocatalysts for environmental pollutant remediation. Herein, the conjunction of plasmonic Au or Ag and Ga-substituted hydrotalcite are obtained by exploiting the manifestation of the structural “memory effect” of Ga-substituted hydrotalcite in the aqueous solutions of Au(CH3COO)3 and Ag2SO4, respectively. The 2D layered matrix of MgGaAl plays a dual function; it is involved in the synthesis of the plasmonic metal nanoparticles, and further, is acting as a support. The compressive investigations using X-ray diffraction (XRD), UV-diffuse reflectance spectroscopy (UVDR), infrared spectroscopy (FT-IR), transmission electron microscopy (TEM/HRTEM), high-angle annular dark-field imaging/scanning transmittance electron microscopy (HAADF/STEM) and X-ray photoelectron spectroscopy (XPS) describe structural, composition and nano/micromorphology characteristics of the novel heterostructures, while UVDR analysis afforded to study the features of their plasmonic responses. Results reveal that the catalysts are formed by close conjunction of small nanoparticles of Au or Ag (with a mean size less than 20 nm) that are formed on the larger particles of MgGaAl and own plasmonic features within the visible range. The catalysts performances were tested towards photocatalytic degradation of p-dichlorobenzene and 4-nitrophenol under solar light irradiation. Results revealed that the degradation of the pollutants is entangled to the plasmonic response of the heterostructured catalysts that is the key functionality in promoting photocatalysis and degrading the pollutants, under solar light irradiation. MgGaAl showed a very low photocatalytic activity when irradiated by UV or solar light. Notably, the heterostructured catalysts proceeded in good to excellent yield to remove the tested pollutants, under solar light irradiation. The sustainability of the novel catalysts was assessed through the kinetic analysis of the degradation processes of the tested pollutants and their mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call