Abstract

Surface water contamination by various dyes and pigments is a global problem caused by rapid industry, particularly textile/dyeing. Bangladesh's export-oriented textile sector has exploded in recent decades, polluting local waterways significantly. In this study, nano-ZnO were prepared using surfactant-assisted sol–gel, hydrothermal and thermal methods. SEM, XRD, reflectance spectrophotometer, EDS and adsorption tests were used to characterize the synthesized nano-ZnO. BET isotherms were used to determine the surface area, pore volume, and pore size of the as-prepared nano-ZnO. The mixed surfactant assisted-sol gel method produced nanorod-ZnO, whereas the hydrothermal and/or thermal methods yielded clusters of needles ZnO, as proven by SEM images. XRD data revealed that the synthesized nanorod-ZnO had a mainly wurtzite crystalline structure and their size was estimated using the Scherrer equation to be about 23.90 nm. EDS spectra confirmed the synthesis of pure nanorod-ZnO. Using a UV–visible reflectance spectrophotometer, the band gap energy of the as-prepared nanorod-ZnO was found to be 3.35 eV. According to BET isotherms, the BET and Langmuir surface areas were 4 and 5.4 m 2 /g, respectively. Prior to analyzing photodegradation, the RB was adsorbing in the presence of various doses of the nanorod-ZnO in the dark, but no adsorption was observed. The photocatalytic activities of the synthesized nano-ZnO were compared to TiO 2 (anatase) for the degradation of RB in an aqueous system under solar light, UV, fluorescence, and tungsten filament light irradiation. Nanorod-ZnO showed exceptional photocatalytic activity in degrading RB in an aqueous solution under solar light irradiation. The results suggest that 0.01 g/50 mL nanorod-ZnO with a solution pH of 7.8 is the best combination for complete degradation of 2.00 × 10 -5 M RB under solar light irradiation. When nano-ZnO was exposed to light, the inhibiting effect of ethanol and/or tert -butanol on the degradation of RB confirmed the formation of mostly hydroxyl free radicals. The synthesized nanorod-ZnO shown substantial photocatalytic activity in the removal of pollutants from industrial effluents and contaminated river water under solar light irradiation. A mechanism of excellent photocatalytic activity of the nanorod-ZnO is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call