Abstract

Nowadays, a massive amount of data leads to cause network traffic and inflexible mobility in future mobile networks. A new Group Mobility Model (GMM) named MoMo is introduced that addresses the issue of the aforementioned problems. Even though, software defined network (SDN) is functional with network-rooted mobility protocols that enhance the network efficiency. Some existing network-rooted mobility administration methods still undergo handover delay, packet loss, and high signaling cost through handover processing. In this research work, SDN-based fast handover for GMM is proposed. Here, the neighbor number of evolving node transition probabilities of the mobile node (MN) and their obtainable resource probabilities are estimated. This makes a mathematical framework to decide the preeminent number of the evolving nodes and then allot these to mobile nodes virtually with all associations finished by the exploit of Open-Flow tables. The performance examination demonstrates that the proposed SDN rooted GMM technique has the enhanced performance than the conventional handover process and further technique by handover latency, signaling cost, network throughput, and packet loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call