Abstract
Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.
Highlights
The vast majority of our knowledge of the architecture and gene content of mammalian Y chromosomes is derived from analysis of a single species, human [1,2,3,4]
Have additional X-Y common genes that have been lost in the primates and rodents been maintained in other mammalian lineages, and what are their functions? Further, if novel Y chromosome genes that enhance male reproductive function have emerged during the course of primate evolution, have similar processes shaped the Y chromosome of other mammalian lineages? If so, do they show a limited expression pattern restricted to the testes? The answers for these questions could be derived by comparative sequencing and evolutionary analysis of Y chromosome genes in additional divergent mammalian species
Using sequence tagged site (STS) primers designed from these sequences we verified that the original PCR product fragments from EIF1AY, Eif2s3y, and CYorf15 gene were Y-borne, both by demonstrating male-specific amplification and by radiation hybrid (RH) mapping (Figure 1a)
Summary
The vast majority of our knowledge of the architecture and gene content of mammalian Y chromosomes is derived from analysis of a single species, human [1,2,3,4]. All published comparative studies have focused on which human (or mouse) Y chromosome genes are present or not in other mammalian species [6,7,8,9,10,11,12,13,14,15] While these studies, those in marsupials and monotremes [16,17,18,19,20], have been extremely useful in highlighting broader evolutionary patterns, there still exists a fundamental gap in our understanding of the novel gene content and processes by which Y chromosome genes have been acquired or lost in other major lineages of mammals. Given the evidence that primates harbor multicopy Y-borne genes not found in other mammals [4,21,22], it is probable that novel genes may have been acquired or retained in other mammalian lineages
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have