Abstract

Platelet-type von Willebrand disease is a bleeding disorder resulting from gain-of-function mutations of glycoprotein (GP) Ibalpha that increase its affinity for von Willebrand factor (vWf). The two known naturally occurring mutations, G233V and M239V, both enrich the valine content of an already valine-rich region within the Cys(209)-Cys(248) disulfide loop. We tested the effect of converting other non-valine residues in this region to valine. Of 10 mutants expressed in CHO cells as components of GP Ib-IX complexes, four displayed a gain-of-function phenotype (G233V, D235V, K237V, and M239V) based on (125)I-vWf binding and adhesion to immobilized vWf. The remainder displayed loss-of-function phenotypes. The gain-of-function mutants bound vWf spontaneously and had a heightened response to low concentrations of ristocetin or botrocetin, whereas the loss-of-function mutants bound vWf more poorly than wild-type GP Ibalpha. No distinct gain- or loss-of-function conformations were identified with conformation-sensitive antibodies. Compared with cells expressing wild-type GP Ibalpha, cells expressing the gain-of-function mutants rolled significantly more slowly over immobilized vWf under flow than wild-type cells and were able to adhere to vWf coated at lower densities. In aggregate, these data indicate that the region of GP Ibalpha bounded by Asn(226) and Ala(244) regulates the affinity for vWf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.