Abstract

Novel g-C3N4 nanorods/Cu3BiS3 (abbreviated as R-GCN/Cu3BiS3) nanocomposites were fabricated via a facile hydrothermal procedure, and they were used for the removal of tetracycline (TC), amoxicillin (AMX), methyl orange (MO), rhodamine B (RhB), and Cr (VI) upon visible light. The XRD, EDX, XPS, and FTIR analyses affirmed anchoring Cu3BiS3 nanoparticles over the R-GCN component. An utmost amount of TC removal was gained when 30 wt% of Cu3BiS3 was anchored on R-GCN. The photoactivity of R-GCN/Cu3BiS3 (30%) nanocomposite for the removal of TC was 62.5 and 5.41-folds premier than GCN and T-GCN photocatalysts, respectively. The R-GCN/Cu3BiS3 (30%) nanocomposite demonstrated significant activity even after four cycles of application. The anchored Cu3BiS3 component not only improved the extent of visible-light absorption, but also facilitated segregation and migration of charges, which were confirmed by UV–vis DRS, PL, EIS, and photocurrent analyses. Regarding the facile fabrication procedure, and outstanding activity, this research can be a good reference for construction of GCN-based visible-light-induced photocatalysts for treatment of various contaminants in wastewaters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call