Abstract
Amphiphilic biocompatible copolymers are promising materials for the elaboration of nanosystems for drug delivery applications. This paper aims at reporting on the synthesis of new functional amphiphilic copolymers based on biocompatible and bioeliminable blocks. Poly(ethylene oxide) was selected as the hydrophilic block, whereas an aliphatic polyester, i.e. poly(ε-caprolactone), or a polycarbonate, i.e. poly(trimethylene carbonate), was chosen as the degradable hydrophobic block. In order to allow a post-functionalization of the micelles core, azide groups were introduced on the hydrophobic segment to provide reactivity towards functional alkyne derivatives by the copper azide–alkyne cycloaddition (CuAAC). For this purpose, a functional lactone, i.e. α-chloro-ε-caprolactone, was introduced during the polymerization of the hydrophobic block before being converted into azide on the preformed copolymer. Such reactivity of the block copolymers and their self-assemblies is of prime interest for drugs or fluorescent dyes grafting, or for the crosslinking of the micelle's core. The influence of the azides distribution along the degradable block on the micelles post-functionalization ability has been studied by using alkyne bearing fluorescent dyes as models for drugs. The hydrophilicity of the dye on the micelles post-functionalization efficiency has also been investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.