Abstract

PurposeIn the post-capture stage, the tumbling target rotates the combined spacecraft system, and the detumbling operation performed by the space robot is required. To save the costly onboard fuel of the space robot, this paper aims to present a novel post-capture detumbling strategy.Design/methodology/approachActuated by the joint rotations of the manipulator, the combined system is driven from three-axis tumbling state to uniaxial rotation about its maximum principal axis. Only unidirectional thrust perpendicular to the axis is needed to slow down the uniaxial rotation, thus saving the thruster fuel. The optimization problem of the collision-free detumbling trajectory of the space robot is described, and it is optimized by the particle swarm optimization algorithm.FindingsThe numerical simulation results show that along the trajectory planned by the detumbling strategy, the maneuver of the manipulator can precisely drive the combined system to rotate around its maximum principal axis, and the final kinetic energy of the combined system is smaller than the initial. The unidirectional thrust and the lower kinetic energy can ensure the fuel-saving in the subsequent detumbling stage.Originality/valueThis paper presents a post-capture detumbling strategy to drive the combined system from three-axis tumbling state to uniaxial rotation about its maximum principal axis by redistributing the angular momentum of the parts of the combined system. The strategy reduces the thrust torque for detumbling to effectively save the thruster fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.