Abstract
PurposeAsteroids have the characteristics of noncooperative, irregular gravity and complex terrain on the surface, which cause difficulties in successful landing for conventional landers. The purpose of this paper is to study the trajectory tracking problem of a multi-node flexible lander with unknown flexible coefficient and space disturbance.Design/methodology/approachTo facilitate the stability analysis, this paper constructs a simplified dynamic model of the multi-node flexible lander. By introducing the nonlinear transformation, a concurrent learning-based adaptive trajectory tracking guidance law is designed to ensure tracking performance, which uses both real-time information and historical data to estimate the parameters without persistent excitation (PE) conditions. A data selection algorithm is developed to enhance the richness of historical data, which can improve the convergence rate of the parameter estimation and the guidance performance.FindingsFinally, Lyapunov stability theory is used to prove that the unknown parameters can converge to their actual value and, meanwhile, the closed-loop system is stable. The effectiveness of the proposed algorithm is further verified through simulations.Originality/valueThis paper provides a new design idea for future asteroid landers, and a trajectory tracking controller based on concurrent learning and preset performance is first proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.