Abstract

This paper presents a new fluorescent approach for the detection of protein tyrosine phosphatase 1B (PTP1B) based on titanium dioxide-decorated single-wall carbon nanohorns (TiO2-SWCNHs). The novel TiO2-SWCNHs nanocomposite was synthesized and characterized for the first time and the phosphorylated peptide as the substrate of PTP1B was designed. Properties of SWCNHs and TiO2 were combined by growing nano-sized TiO2 particles on SWCNHs, resulting in TiO2-SWCNHs. TiO2 provides SWCNHs a large adsorption surface area and can specifically bind to phosphopeptide substrate. TiO2-SWCNHs effectively quenched the fluorescence of the phosphorylated peptide substrate labeled by the fluorophore, and the system had a low fluorescence background. In the presence of PTP1B, dephosphorylation of the peptide occurred owing to the reaction between PTP1B and the peptide, causing the separation of the dye-labeled peptide from TiO2-SWCNHs, which resulted in fluorescence enhancement of the reaction system. Thus, a simple and rapid strategy for the detection of PTP1B activity was developed, with a detection limit of 0.01 ng/mL and linear range of 0–10 ng/mL. The system can be used to detect PTP1B in serum using the standard addition method. This system provides a new approach for screening PTP1B inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call