Abstract
Polychlorinated biphenyls (PCBs) can induce neurotoxicity, immunotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity (IARC group 1 Carcinogens). Scientific data suggest that resveratrol possesses the ability to attenuate ortho-PCB-induced toxicity. Recently, a novel ferrocene-containing triacyl derivative of resveratrol (RF) was synthesized and in this study, its potential to protect CHO-K1 cells from selected PCB congeners (75 µM) was evaluated. Cell viability/proliferation was observed by Trypan Blue (TB), Neutral Red (NR), Kenacid Blue (KB), and MTT bioassays, ROS formation by fluorescent probes, and the extent of apoptosis by flow cytometry. All applied bioassays confirmed that RF (2.5–100 μM) remarkably improves viability in PCB 153-treated cells with an increase in cell survival almost up to control levels. This effect was not determined after PCB 77 exposure, although ROS formation was decreased at RF ≥ 50 µM. Apoptosis was significant (p < 0.05) for both congeners. In PCB 77-treated cells, RF did not suppress the induction of cell death. The intended protective effect of RF was evident when cells were treated with PCB 153, and this correlates with results obtained for cell viability. Compared to resveratrol, the novel RF showed promising results in terms of improved biological activity and cell protection against PCB 153 toxicity at all concentrations tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.